Aliphatic compounds

Dr. Suman Adhikari Department of Chemistry, Govt. Degree college, Dharmanagar Email: <u>sumanadhi@gmail.com</u> Phone no.: 9774354025 Corey House synthesis of alkanes coupling of an alkyl halide with lithium dialkylcopper $R-X + Li \rightarrow R-Li + CuI \rightarrow R_2CuLi$

 $R_2CuLi + R'-X \rightarrow R-R'$ (alkane)

(R'-X should be 1° or methyl)

This synthesis is important because it affords a synthesis of a larger alkane from two smaller alkyl halides. $\begin{array}{cccc} CH_3 & CH_3 & CH_3 \\ CH_3CH-Br + Li \rightarrow CH_3CH-Li + CuI \rightarrow (CH_3CH)_2-CuLi \\ \text{isopropyl bromide} \end{array}$

 $\begin{array}{rcl} \mathrm{CH}_{3} & \mathrm{CH}_{3} \\ (\mathrm{CH}_{3}\mathrm{CH})_{2}\mathrm{-}\mathrm{CuLi} &+ & \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{-}\mathrm{Br} \xrightarrow{} \mathrm{CH}_{3}\mathrm{CH}\mathrm{-}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

Note: the R'X should be a 1° or methyl halide for the best yields of the final product.

Dihydroxylation of alkenes

Anti- Dihydroxylation

 Anti dihydroxylation is achieved in two steps—epoxidation followed by ring opening with ⁻OH or H₂O.

Syn-Dihydroxylation

 Syn hydroxylation results when an alkene is treated with either KMnO₄ or OsO₄.

Mechanis of Syn-Dihydroxylation

Woodward-prevost hydroxylation

The formation of 1,2-diol products from alkenes can be achieved using Pr'evost's reagent – a solution of iodine in carbon tetrachloride together with an equivalent of silver(I) acetate or silver(I) benzoate. Under anhydrous conditions, this oxidant yields directly the diacyl derivative of the *anti*-diol (Pr'evost conditions), while in the presence of water the monoester of the *syn*-diol is obtained (Woodward conditions).

Woodward-prevost hydroxylation

Addition of Hydrogen Halides

Markovnikov's Rule

When an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen adds to the carbon that has the greater number of hydrogen substituents, and the halogen adds to the carbon that has the fewer hydrogen substituents.

Mechanistic Basis for Markovnikov's Rule: Example 1

Anti Markovnikov's Rule Or Peroxide effect

When alkenes are treated with HBr in the presence of *peroxides* (i.e., compounds with the general formula ROOR) the addition occurs in an anti-Markovnikov manner in the sense that the hydrogen atom becomes attached to the carbon atom with fewer hydrogen atoms.

$$CH_3CH=CH_2 + HBr \longrightarrow CH_3CH_2CH_2Br$$

This anti-Markovnikov addition occurs *only when HBr is used in the presence of peroxides* and does not occur significantly with HF, HCl, and HI even when peroxides are present.

Free Radical Initiation

 Peroxide O-O bond breaks easily to form free radicals.

$$R \rightarrow O \rightarrow R$$
 \xrightarrow{heat} $R \rightarrow O \rightarrow R$

Hydrogen is abstracted from HBr.

Propagation Steps

• Bromine adds to the double bond.

Hydrogen is abstracted from HBr.

Anti-Markovnikov ??

 Tertiary radical is more stable, so that intermediate forms faster.

OZONOLYSIS OF ALKENES

- Ozone reacts vigorously with alkenes to form unstable initial ozonides(molozonides) which rearrange spontaneously to form ozonides.
- The rearrangement is thought to go through dissociation of the initial ozonide into reactive fragments that recombine to give the ozonide.
- Ozonides are not usually isolated but are reduced directly by treatment with znic and acetic acid (HOAc).

Ozonide Formation from an Alkene

$$\begin{array}{c} \begin{array}{c} R \\ R' \end{array} \stackrel{R''}{\longrightarrow} H \end{array} \xrightarrow{\begin{array}{c} 1. \ O_3, \ CH_2Cl_2, \ -78 \ ^{\circ}C \end{array}} \xrightarrow{\begin{array}{c} R \\ R' \end{array} \xrightarrow{\begin{array}{c} CH_3 \\ R' \end{array}} \xrightarrow{\begin{array}{c} CH_3 \\ H \end{array}} \xrightarrow{\begin{array}{c} CH_3 \\ CH_3C = CHCH_3 \end{array}} \xrightarrow{\begin{array}{c} 1. \ O_3, \ CH_2Cl_2, \ -78 \ ^{\circ}C \end{array}} \xrightarrow{\begin{array}{c} R' \\ R' \end{array} \xrightarrow{\begin{array}{c} CH_3 \\ H \end{array}} \xrightarrow{\begin{array}{c} O \\ H \\ CH_3C = O \end{array}} \xrightarrow{\begin{array}{c} H \\ R' \end{array} \xrightarrow{\begin{array}{c} H \\ H \end{array}} \xrightarrow{\begin{array}{c} 0 \\ H \\ H \end{array}} \xrightarrow{\begin{array}{c} CH_3 \\ R' \end{array} \xrightarrow{\begin{array}{c} O \\ H \\ H \end{array}} \xrightarrow{\begin{array}{c} 0 \\ H \\ H \end{array}} \xrightarrow{\begin{array}{c} CH_3 \\ CH_3C = O \end{array} \xrightarrow{\begin{array}{c} CH_3 \\ H \\ H \\ H \end{array} \xrightarrow{\begin{array}{c} 0 \\ H \\ H \end{array}} \xrightarrow{\begin{array}{c} 0 \\ H \\ H \end{array}} \xrightarrow{\begin{array}{c} 0 \\ H \\ H \end{array}$$

Hydration of Alkenes

- Oxymercuration-Demercuration
 - Markovnikov product formed
 - Anti addition of H-OH
 - No rearrangements
- Hydroboration
 - Anti-Markovnikov product formed
 - Syn addition of H-OH

HYDROBORATION–OXIDATION The addition of borane to an alkene, followed by reaction with hydroxide ion and hydrogen peroxide, is called hydroboration–oxidation.

Oxymercuration-demercuration

In oxymercuration, the alkene is treated with mercuric acetate in aqueous tetrahydrofuran (THF). When reaction with that reagent is complete, sodium borohydride is added to the reaction mixture.

Catalytic hydrogenation of alkenes

In the presence of a metal catalyst such as Pt, Pd, or Ni, H₂ adds to the double bond of an alkene to form an alkane. Without the catalyst, the energy barrier to the reaction would be enormous because the H -H bond is so strong. The catalyst decreases the energy of activation by breaking the H –H bond. Pt and Pd are used in a finely divided state adsorbed on charcoal (Pt/C, Pd/C). The platinum catalyst is frequently used in the form of which is known as Adams catalyst.

The addition of hydrogen is called **hydrogenation**. Because the preceding reactions require a catalyst, they are examples of **catalytic hydrogenation**.

 H_2 is adsorbed on the surface of the metal and that the alkene complexes with the metal by overlapping its own *p* orbitals with vacant orbitals of the metal. Breaking the π bond of the alkene and the sigma bond of H_2 and forming the C-H sigma bonds all occur on the surface of the metal.

Cumulated, conjugated, and isolated diene.

IN CONJUGATED POLYENES THE DOUBLE AND SINGLE BONDS ALTERNATE ALONG THE CHAIN.

bonds of an alkadiene, the double bonds are said to be isolated.

Conjugated dienes are more stable than isolated dienes.

Cumulated dienes have the double bonds sharing a common atom as in a group of compounds called allenes.

1,2 addition vs 1, 4 addition

•The 1,2-addition product results from Markovnikov addition of HBr across two adjacent carbon atoms (C1 and C2) of the diene.

•The 1,4-addition product results from addition of HBr to the two end carbons (C1 and C4) of the diene. 1,4-Addition is also called conjugate addition.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mechanism 16.1 Electrophilic Addition of HBr to a 1,3-Diene-1,2- and 1,4-Addition

Step [1] Addition of the electrophile (H*) to the π bond

$$\begin{array}{ccccccc} CH_2 = CH - CH = CH_2 & \longrightarrow & CH_2 - CH = CH_2 & \leftarrow & CH_2 - CH = CH_2 \\ H & H & H \\ H & H \\$$

 Addition of H* (from HBr) forms a new C-H bond as the H-Br bond is broken. H* always adds to a terminal C of the 1,3-diene to form a resonance-stabilized carbocation. This is the slow step of the mechanism because two bonds are broken and only one is formed.

Kinetic Vs Thermodynamic Products

•The amount of 1,2- and 1,4-addition products formed in electrophilic addition reactions of conjugated dienes depends greatly on the reaction conditions.

•When a mixture containing predominantly the 1,2-product is heated, the 1,4-addition product becomes the major product at equilibrium.

- The 1,2-product is formed faster because it predominates at low temperature. The product that is formed faster is called the *kinetic product*.
- The 1,4-product must be more stable because it predominates at equilibrium. The product that predominates at equilibrium is called the *thermodynamic product*.

$HC = CH > CH_2 = CH_2 > CH_3 - CH_3$

Acidic nature of alkyne

The hydrogen atoms of ethyne are considerably more acidic than those of ethane or ethane.

$$R - C \equiv C - H \xrightarrow{\text{NaNH}_2} R - C \equiv C \cdot Na^+ \xrightarrow{\text{R'-X}} R - C \equiv C - R'$$

$$H - C \equiv C - H \xrightarrow{\text{NaNH}_2} H - C \equiv C \cdot Na^+ \xrightarrow{\text{H}_3C - X} H - C \equiv C - CH_3$$

The acetylenic hydrogen is weakly acidic (pKa ~ 25) and can be removed with a strong base (e.g. NaNH2) to give an anion (called an alkynide anion or acetylide ion).

Acidity of Alkynes

The order of boiling point among hydrocarbons is alkynes > alkenes > alkanes.

These hydrocarbons also possess low dipole moment.

$CH_3CH_2C \equiv CH$	$CH_3CH_2CH = CH_2$	CH ₃ C ≡	С	CH3
-----------------------	---------------------	---------------------	---	-----

 $\mu = 0.80 \text{ D}$ $\mu = 0.30 \text{ D}$ $\mu = 0.0 \text{ D}$

Acetylene having two hydrogen atoms is more acidic than a mono substituted acetylene.

DEHYDRATION OF ALCOHOLS

Features of dehydration

A carbocation is formed as an ntermediate.

- The ease of dehydration of alcohols is $3^{\circ} > 2^{\circ} > 1^{\circ}$
- 3° carbocation is most stable

$$R - C - OH > R - C - OH > R - C - OH + H - OH +$$

Features of dehydration

The stability of alkenes is governed by Saytzeff's rule

 $\mathsf{R}_2\mathsf{C}=\mathsf{C}\ \mathsf{R}_2> \quad \mathsf{R}_2\mathsf{C}=\mathsf{C}\mathsf{H}\ \mathsf{R}> \quad \mathsf{R}_2\mathsf{C}=\mathsf{C}\mathsf{H}_2 \ \textbf{~} \quad \mathsf{R}\mathsf{C}\mathsf{H}=\mathsf{C}\mathsf{H}\mathsf{R} \ > \ \mathsf{R}\mathsf{C}\mathsf{H}=\mathsf{C}\mathsf{H}_2$

